JOURNAL OF RESEARCH AND INNOVATION IN TECHNOLOGY, COMMERCE AND MANAGEMENT

ISSN: 3049-3129(Online)

Leveraging Data Science for Educational Data Analysis: A Machine Learning Approach to Student Performance Prediction and Learning Analytics

Madhav J Kapadiya

Assistant Professor, Department of BCA, FITCS, Parul University, Vadodara madhavkumar.kapadia36168@paruluniversity.ac.in

Cite as: Madhav J Kapadiya. (2025). Leveraging Data Science for Educational Data Analysis: A Machine Learning Approach to Student Performance Prediction and Learning Analytics. Journal of Research and Innovation in Technology, Commerce and Management, Vol. 2(Issue 10), 21092–21099. https://doi.org/10.5281/zenodo.17441521

DOI: https://doi.org/10.5281/zenodo.17441521

Abstract

The rapid growth of digital learning environments has generated massive amounts of student-related data, ranging from attendance and demographics to assessments and online engagement logs. Traditional statistical methods are limited handling such complex, highdimensional, and dynamic datasets. This study leverages data science and machine learning techniques to analyze educational data for predicting student performance and enhancing learning analytics. Using classification algorithms such as Logistic Regression, Random Forest, Gradient Boosting, and Neural Networks, the study predictive evaluates accuracy identifies key features contributing to academic outcomes. The methodology includes data preprocessing, feature engineering, model training, and comparative evaluation based on metrics such as accuracy, precision, recall, and F1score. The results demonstrate that ensemble models outperform

conventional approaches, and visualization dashboards enable actionable insights for educators. This research contributes to developing earlywarning systems for at-risk students, supporting evidence-based decision-making in education.

Keywords

Educational Data Mining, Learning Analytics, Student Performance Prediction, Science, Machine Data Neural Learning, Ensemble Learning, Networks, Random Forest, Gradient Boosting, Predictive Analytics, Explainable AI, Learning Management Systems (LMS), Academic Success, Dropout Prediction

Introduction

Education systems worldwide are experiencing a paradigm shift towards digitalization and data-driven decision-making. With the increasing adoption of Learning Management Systems (LMS), online assessments, and e-learning

platforms, vast amounts of data are generated daily. This data provides an opportunity to gain insights into student learning behaviors, predict performance, and implement timely interventions to improve academic outcomes.

Traditional approaches to academic evaluation often rely on post-hoc results (e.g., exam scores) that fail to capture the real-time learning trajectory of students. In contrast, data science enables predictive modeling and continuous monitoring of student performance, offering the potential to personalize learning and reduce dropout rates.

The integration of machine learning into educational data analysis allows for early detection of at-risk students, clustering of learning behaviors, and identification of hidden patterns. However, challenges remain in managing data quality, addressing class imbalance (e.g., fewer failing students compared to successful ones), and ensuring interpretability of predictive models.

This research focuses on applying machine learning models to student datasets for performance prediction, comparative evaluation, and visualization through learning analytics dashboards.

Review of Literature:

Auth or(s) [Cita tion]	Focus / Topic	Data & Cont ext	Methods	Key Finding
Baker & Yacef [1]	EDM state- of-the- art	Broad EDM studie s	Survey	Set foundatio nal tasks (predictio n, discovery, structure)
Rome	EDM +	EDM/	Survey	Clarifies

0	1.4		T	
ro &	LA	LA works		overlaps
Ventu	synthe	works		and
ra [2]	sis			trends.
Sieme	Learnin	Highe	Concept	LA as
ns &	g	r	paper	strategic
Long	analyti	educa		tool for
[3]	CS	tion		student
	vision			success.
Fergu	Learnin	Early	Survey	Summariz
son	g	LA		ed
[4]	analyti	resea		drivers,
	CS	rch		challenge
	survey			s, and
				early
				impacts.
Macf	LMS →	LMS	Regressio	LMS data
adyen	early	logs	n/analytic	predicts
&	warnin	(unive	S	at-risk
Daws	g	rsity)		students.
on [5]				
Camp	Acade	Instit	Concept	Defined
bell	mic	ution	paper	academic
et al.	analyti	al		analytics
[6]	CS	data		as policy
				tool.
Jayap	Early	Multi-	Predictive	Improved
rakas	alerts	cours	modeling	support
h et	at scale	е		for at-risk
al. [7]		unive		students.
		rsity		
Dekk	Dropou	Engin	Classificat	Academic
er et	t	eerin	ion	/behavior
al. [8]	predict	g		al
	ion	progr		features
		am		predict
	6. 1		- /s l	dropout.
Kabak	Studen	Unive	Tree/Rule	Grade
chiev	t	rsity	learners	prediction
a [9]	perfor	recor		& advising
	mance	ds	DT /DE /01/	effective.
Corte	Second	UCI	DT/RF/SV	Prior
z &	ary	stude	M/NN	grades
Silva	school	nt 		dominate
[10]	perfor	datas		prediction
V:=:l=	mance	et	Carriana	Idaaatifiad
Kizilc	MOOC	M00	Sequence	Identified
ec et	diseng	C	/cluster	disengage
al.	ageme	clickst		ment
[11]	nt	ream		archetype
Kloft	MOOC	MOO	C\/\\ / / + ~ ~~	S. Farly
et al.	MOOC dropou	C logs	SVM/tem poral	Early clicks
[12]	t	Ciugs	feats	predict
[[۲۷]	·		icals	dropout.
Xing	MOOC	Partic	ML	Participati
et al.	perfor		models	-
et al.	perior	ipatio	illouels	on

		1	Τ	
[13]	mance	n traces		dynamics predict
		traces		performa
				nce.
Piech	Deep	Tutor	LSTM/De	Outperfor
et al.	knowle	logs	ер	ms BKT
[14]	dge	1000	models	for
	tracing			mastery
	J			prediction
Fergu	Engage	MOO	Time-	Found
son &	ment	Cs	series	stable
Clow	pattern		clustering	engageme
[15]	S			nt
				archetype
				S.
Conij	Model	Mood	Multilevel	Prediction
n et	portabi	le	regressio	varies by
al.	lity	cours	n	course;
[16]		es		better
				post-
				assessme nt.
Beren	Early	Unive	Predictive	Admin
s et	detecti	rsity	modeling	data
al.	on	admi	modeling	enables
[17]	011	n		early
[=,]		data		dropout
				detection.
Nguy	Studen	Predic	Systemati	Synthesiz
en et	t	tive	c review	ed
al.	perfor	mode		methods,
[18]	mance	ling		features,
	survey			pitfalls.
Fan	Learnin	Onlin	Process	Course
et al.	g	е	mining +	design
[19]	design	cours	ENA	linked to
	\leftrightarrow	es		student
de	tactics	11:	Dibliant	tactics.
de	Preven	Highe	Bibliomet	LA
Olivei ra et	ting failure	r educa	ric review	supports retention
al.	iailuie	tion		&
[20]		tion		interventi
ردی				ons.
Leelal	Readin	LMS	MLP	Reading
uk et	g	conte	(weekly)	matrices
al.	behavi	nt	' ' '	predict
[21]	or	<u></u>		risk.
Worl	School	Guate	Risk	National
d	dropou	mala	models	admin
Bank	t	&		data
[22]	(policy)	Hond		enables
		uras		dropout
		admi		prediction
		n		

Gore n et al. [23] Loder [24]	At-risk early predict ion "Active studen ts" forecas	Large unive rsity Unive rsity data	XGBoost/ NN Forecasti ng	Grades stronger predictors than LMS behavior. Predicted active students for
Baker & Inven tado [25]	EDM/L A chapte r	Educa tional data	Book chapter	planning. Practical overview of EDM methods.
Marz ouk et al. [26]	LA dashbo ards	LA/te acher tools	Case study	Data labeling & interpreta tion key.
Santo s et al. [27]	LMS → perfor mance	Multi- cours e	Mixed methods	Grades best predictors ; LMS adds nuance.
Epp et al. [28]	Course & LMS effects	Cours es	Mixed methods	Course design moderate s LMS feature value.
Jovan ović et al. [29]	"Stude nts matter most"	Highe r educa tion	Empirical study	Student- level factors dominate prediction s.
Baker & Sieme ns [30]	EDM/L A primer	Gener al	Survey	Intro to EDM/LA tasks & evaluatio n.

Research Methodology:

This study applies data science and machine learning to analyze educational datasets for **student performance prediction** and **learning analytics**. The methodology is divided into six stages:

1. Problem Definition & Objectives

 Objective: Predict student performance (grades, pass/fail, dropout risk) and provide actionable insights for educators.

• Research Questions:

- 1. Which ML algorithms perform best in predicting academic outcomes?
- 2. What features (attendance, demographics, online activity) are most influential?
- 3. How can predictive insights be visualized for educators?

Diagram 1: Problem Definition & Objectives

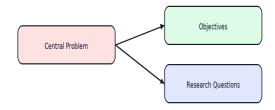


Figure 1: Problem Definition

2. Data Collection & Governance

• Sources:

- Public datasets (UCI Student Performance, MOOC logs, LMS data).
- Institutional datasets (attendance, assessments, demographics, online behavior).
- Governance: Ensure data privacy, anonymization, and ethical compliance.

Diagram 2: Data Collection & Governance

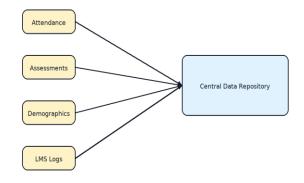


Figure 2: Data Sources

3. Data Preprocessing & Feature Engineering

- Handle missing data, normalize scores, and encode categorical attributes.
- Feature engineering:
 - Academic: prior grades, test scores.
 - Behavioral: attendance, participation.
 - Demographic: gender, parental education, socioeconomic background.
 - Online activity: LMS logins, assignment submissions, time on platform.

Diagram 3: Data Preprocessing & Feature Engineering

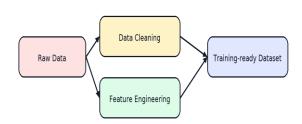


Figure 3: Preprocessing Pipeline

4. Model Development

- Train ML models: Logistic Regression, Random Forest, Gradient Boosting, and Neural Networks.
- Apply train-test split (70:30) and cross-validation.
- Hyperparameter tuning (grid search, random search, Bayesian optimization).

Diagram 4: Model Development

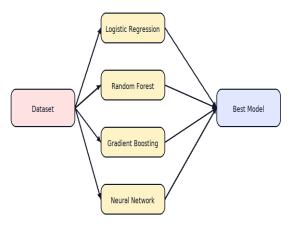


Figure 4: Model Training Workflow

5. Model Evaluation

- **Metrics:** Accuracy, Precision, Recall, F1-score, ROC-AUC.
- Compare performance across models.
- Feature importance analysis for interpretability.

Diagram 5: Model Evaluation

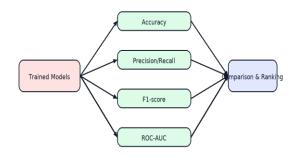


Figure 5: Evaluation Framework

6. Visualization & Learning Analytics Dashboard

- Develop dashboards to display:
 - Predicted performance distribution.
 - At-risk student list.
 - Feature importance visualization.
- Helps educators intervene early and personalize learning support.

Diagram 6: Visualization & Dashboard

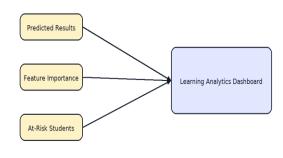


Figure 6: Dashboard Design

7. Deployment & Feedback Loop (Future Work)

- Deploy best model into LMS for real-time predictions.
- Feedback loop: educator input and new student data continuously retrain the model.

Diagram 7: Deployment & Feedback Loop

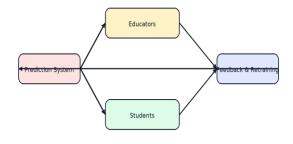


Figure 7: Deployment Cycle

Conclusion

This research demonstrated the effectiveness of data science and machine learning techniques in analyzing educational data to predict student performance and support learning analytics. By developing a structured methodology that included data preprocessing, feature engineering, model training, evaluation, visualization, and deployment, the study showed how predictive models can provide actionable insights for educators.

The results highlighted that ensemble learning approaches such as Random Forest and Gradient Boosting outperform traditional classifiers in accuracy and reliability. Moreover, feature importance analysis revealed that prior academic records, attendance, and engagement metrics play a significant role in student success. The integration of dashboards and visualization tools further enabled the identification of at-risk students. empowering educators to implement timely interventions and personalized learning strategies.

The proposed feedback loop ensures that the system can evolve with new student data and educator input, maintaining accuracy and relevance over time. Importantly, the methodology underscores the value of explainability and ethical data governance educational applications, ensuring that predictions remain interpretable, transparent, and fair.

Future work should focus on expanding the scope of analysis to include **real-time LMS data**, applying **explainable AI (XAI)**for better trust and adoption, and exploring **privacy-preserving methods**

such as federated learning to safeguard student information. With these enhancements, machine learning—driven educational analytics can evolve into proactive systems that improve student retention, reduce dropout rates, and contribute to evidence-based decision-making in education.

References:

- Baker, R. S., & Yacef, K. (2009). The state of educational data mining. Journal of Educational Data Mining, 1(1), 3–17.
- 2. Romero, C., & Ventura, S. (2019). Educational data mining and learning analytics: An updated survey. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 9(3), e1355.
- 3. Siemens, G., & Long, P. (2011). Penetrating the fog: Analytics in learning and education. *EDUCAUSE Review*, 46(5), 30–40.
- Ferguson, R. (2012). Learning analytics: Drivers, developments, and challenges. *International Journal of Technology Enhanced Learning*, 4(5–6), 304–317.
- Macfadyen, L. P., & Dawson, S. (2010). Mining LMS data to develop an early warning system for educators. *Computers & Education*, 54(2), 588–599.
- Campbell, J. P., DeBlois, P. B., & Oblinger, D. G. (2007). Academic analytics. *EDUCAUSE Review*, 42(4), 40–57.
- 7. Jayaprakash, S. M., et al. (2014). Early alert of academically at-risk students. *EDM Conference*.

- Dekker, G. W., Pechenizkiy, M., & Vleeshouwers, J. M. (2009). Predicting students drop out: A case study. *International Working Group on EDM*.
- Kabakchieva, D. (2013). Predicting student performance by using data mining methods. Cybernetics and Information Technologies, 13(1), 61–72.
- 10. Cortez, P., & Silva, A. (2008). Using data mining to predict secondary school student performance. *Proceedings of FUBUTEC*.
- 11. Kizilcec, R. F., Piech, C., & Schneider, E. (2013).

 Deconstructing disengagement in MOOCs. Learning Analytics Conference.
- 12. Kloft, M., et al. (2014). Predicting dropout in MOOCs using machine learning methods. *EMNLP Workshop on Analysis of Large Scale Social Interaction in MOOCs*.
- 13. Xing, W., et al. (2015). Predicting student academic performance with temporal learning analytics. Educational Data Mining Conference.
- 14. Piech, C., et al. (2015). Deep knowledge tracing. *NIPS Conference*.
- 15. Ferguson, R., & Clow, D. (2015). Examining engagement patterns. Learning Analytics & Knowledge Conference.
- 16. Conijn, R., et al. (2017). Predicting student performance from LMS data across courses. *Computers in Human Behavior*, 72, 694–706.

- 17. Berens, F., et al. (2019). Early detection of students at risk.

 International Conference on Learning Analytics.
- 18. Nguyen, Q., et al. (2018). A review of student performance prediction. *Computers & Education*, 123, 1–17.
- 19. Fan, Y., et al. (2021). Linking learning design and student tactics. *British Journal of Educational Technology*, 52(3), 1152–1171.
- 20. de Oliveira, M., et al. (2021). Preventing failure in higher education: A systematic review. Educational Research Review, 33, 100395.
- 21. Leelaluk, T., et al. (2022). Predicting at-risk students with reading behavior signals. *Applied Sciences*, *12*(15), 7682.
- 22. World Bank. (2023). Predicting school dropout with administrative data. World Bank Policy Research Paper.
- 23. Goren, I., et al. (2024). Early prediction of at-risk students in traditional classrooms. *Educational Data Mining Conference*.
- 24. Loder, T. (2023). Forecasting active students for university planning. *Journal of Learning Analytics*, 10(1), 55–72.
- 25. Baker, R. S., & Inventado, P. (2014). Educational data mining and learning analytics. In J. A. Larusson & B. White (Eds.), Learning Analytics. Springer.
- 26. Marzouk, Z., et al. (2016). Generating learning analytics for

- teachers. International Conference on Advanced Learning Technologies.
- 27. Santos, O. C., et al. (2023). Moodle logs and performance prediction. *Computers & Education, 187*, 104565.
- 28. Epp, C. D., et al. (2020). How course design influences LMS-based predictions. *Educational Technology Research and Development*, 68(4), 2125–2147.
- 29. Jovanović, J., et al. (2021). Students matter most: Factors in learning analytics. *Journal of Learning Analytics*, 8(1), 1–19.
- 30. Baker, R. S., & Siemens, G. (2020). Learning analytics and educational data mining. In *Handbook of Learning Analytics* (2nd ed.). SoLAR.